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Abstract

In this communication, several sliding friction formulations used in spur gear dynamics are examined and compared in

terms of the predictions of interfacial friction forces and off-line-of-action motions. Competing friction formulations

include Coulomb models with time-varying friction coefficients and empirical expressions based on elasto-hydrodynamic

and/or boundary lubrication regime principles. Predicted results compare well with friction force measurements.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Gear dynamic researchers [1–7] have typically modeled sliding friction phenomenon by assuming Coulomb
formulation with a constant coefficient (m) of friction (it is designated as Model I in this communication). In
reality, tribological conditions change continuously due to varying mesh properties and lubricant film
thickness as the gears roll through a full cycle [8–11]. Thus, m varies instantaneously with the spatial position
of each tooth and the direction of friction force changes at the pitch point. Alternative tribological theories,
such as elasto-hydrodynamic lubrication (EHL), boundary lubrication or mixed regime, have been employed
to explain the interfacial friction in gears [8–11]. For instance, Benedict and Kelley [8] proposed an empirical
dynamic friction coefficient (designated as Model II) under mixed lubrication regime based on measurements
on a roller test machine. Xu et al. [9,10] recently proposed yet another friction formula (designated as Model
III) that is obtained by using a non-Newtonian, thermal EHL formulation. Duan and Singh [12] developed a
smoothened Coulomb model for dry friction in torsional dampers; it could be applied to gears to obtain a
smooth transition at the pitch point and we designate this as Model IV. Hamrock and Dawson [11] suggested
an empirical equation to predict the minimum film thickness for two disks in line contact. They calculated the
film parameter L, which could lead to a composite, mixed lubrication model for gears (designated as Model
V). Overall, no prior work has incorporated either the time-varying m(t) or Models II to V, into multi-
degree-of-freedom (MDOF) gear dynamics. To overcome this void in the literature, specific objectives of
this communication are established as follows: (1) propose an improved MDOF spur gear pair model with
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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time-varying coefficient of friction, m(t), given realistic mesh stiffness profiles [4]; (2) comparatively evaluate
alternate sliding friction models and predict the interfacial friction forces and motions in the off-line-of-action
(OLOA) direction; and (3) validate one particular model (III) by comparing predictions to the benchmark gear
friction force measurements made by Rebbechi et al. [13].

2. MDOF spur gear model

Transitions in key meshing events within a mesh cycle are determined from the undeformed gear geometry.
Fig. 1(a) is a snapshot for the example gear set (with a contact ratio s of about 1.6) at the beginning (t ¼ 0) of
the mesh cycle (tc). At that time, pair ]1 (defined as the tooth pair rolling along line AC) just comes into mesh
at point A and pair ]0 (defined as the tooth pair rolling along line CD) is in contact at point C, which is the
highest point of single tooth contact (HPSTC). When pair ]1 approaches the lowest point of single tooth
contact (LPSTC) at point B, pair ]0 leaves contact. Further, when pair ]1 passes through the pitch point P, the
relative sliding velocity of the pinion with respect to the gear is reversed, resulting in a reversal of the friction
force. Beyond point C, pair ]1 will be re-defined as pair ]0 and the incoming meshing tooth pair at point A
will be re-defined as pair ]1, resulting in a linear time-varying (LTV) formulation. The spur gear system model
is shown in Fig. 1(b) and key assumptions for the dynamic analysis include the following: (i) pinion and gear
are rigid disks; (ii) shaft-bearing stiffness elements in the line-of-action (LOA) and OLOA directions are
modeled as lumped springs which are connected to a rigid casing; (iii) vibratory angular motions are small in
comparison to the kinematic motion. Overall, we obtain a linear time-varying system formulation, as
explained in the previous paper [4] with a constant m. Refinements to the multi-degree-of-freedom model of
Fig. 1 with time-varying sliding friction m(t) are proposed as follows. The governing equations for the torsional
motions yp(t) and yg(t) are as follows:

Jp
€ypðtÞ ¼ Tp þ

Xn¼floorðsÞ

i¼0

X piðtÞFpfiðtÞ �
Xn¼floorðsÞ

i¼0

rbp NpiðtÞ, (1)

Jg
€ygðtÞ ¼ �Tg þ

Xn¼floorðsÞ

i¼0

X giðtÞF gfiðtÞ þ
Xn¼floorðsÞ

i¼0

rbg NgiðtÞ. (2)

Here, the ‘‘floor’’ function rounds off the contact ratio s to the nearest integer (towards a lower value); Jp

and Jg are the polar moments of inertia for the pinion and gear; Tp and Tg are the external and braking
torques; Npi(t) and Ngi(t) are the normal loads defined as follows:

NpiðtÞ ¼ NgiðtÞ ¼ kiðtÞ½rbp ypðtÞ � rbg ygðtÞ þ xpðtÞ � xgðtÞ�

þ ciðtÞ½rbp
_ypðtÞ � rbg

_ygðtÞ þ _xpðtÞ � _xgðtÞ�; i ¼ 0; 1; :::; n ¼ floorðsÞ, ð3Þ
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Fig. 1. (a) Snap shot of contact pattern (at t ¼ 0) in the spur gear pair; (b) MDOF spur gear pair system; here k(t) is in the LOA direction.
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where ki(t) and ci(t) are the time-varying realistic mesh stiffness and viscous damping profiles; rbp and rbg are
the base radii of the pinion and gear; and xp(t) and xg(t) denote the translational displacements (in the LOA
direction) at the bearings. The sliding (interfacial) friction forces Fpfi(t) and Fgfi(t) of the ith meshing pair are
derived as follows; note that five alternate m(t) models will be described in Section 3:

F pfiðtÞ ¼ mðtÞNpiðtÞ; F gfiðtÞ ¼ mðtÞNgiðtÞ; i ¼ 0; . . . ; n. (4a,b)

The frictional moment arms Xpi(t) and Xgi(t) acting on the ith tooth pair are:

X piðtÞ ¼ LXA þ ðn� iÞlþmodðOprbpt; lÞ; i ¼ 0; . . . ; n, (5a)

X giðtÞ ¼ LYC þ il�modðOgrbgt; lÞ; i ¼ 0; . . . ; n. (5b)

where ‘‘mod’’ is the modulus function defined as: mod(x, y) ¼ x�y floor(x/y), if y 6¼0; ‘‘sgn’’ is the sign
function; Op and Og are the nominal operational speeds (in rad/s); and l is the base pitch. Refer to Fig. 1(a) for
length L. The governing equations for the translational motions xp(t) and xg(t) in the LOA direction are:

mp €xpðtÞ þ 2zpBx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KpBx mp

p
_xpðtÞ þ KpBxxpðtÞ þ

Xn¼floorðsÞ

i¼0

NpiðtÞ ¼ 0, (6)

mg €xgðtÞ þ 2zgBx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KgBx mg

p
_xgðtÞ þ KgBxxgðtÞ þ

Xn¼floorðsÞ

i¼0

NgiðtÞ ¼ 0. (7)

Here, mp and mg are the masses of the pinion and gear; KpBx and KgBx are the effective shaft-bearing
stiffness values in the LOA direction, and zpBx and zgBx are their damping ratios. Likewise, the governing
equations for the translational motions yp(t) and yg(t) in the OLOA direction are written as

mp €ypðtÞ þ 2zpBy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KpBy mp

p
_ypðtÞ þ KpByypðtÞ �

Xn¼floorðsÞ

i¼0

FpfiðtÞ ¼ 0, (8)

mg €ygðtÞ þ 2zgBy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KgBy mg

p
_ygðtÞ þ KgByygðtÞ �

Xn¼floorðsÞ

i¼0

FgfiðtÞ ¼ 0. (9)

3. Alternate sliding friction models

3.1. Model I: Coulomb model with m(t)

The Coulomb friction model with time-varying (periodic) coefficient of friction mCi(t) for the ith meshing
tooth pair is derived as follows, where mavg is the magnitude of the time-average:

mCiðtÞ ¼ mavg sgn½modðOprbpt; lÞ þ ðn� iÞl� LAP�; i ¼ 0; . . . ; n. (10)

3.2. Model II: Benedict and Kelley model [8,13]

The instantaneous profile radii of curvature (mm) r(t) of ith meshing tooth are:

rpiðtÞ ¼ LXA þ ðn� iÞlþmodðOprbpt; lÞ; rgiðtÞ ¼ LXY � rpiðtÞ; i ¼ 0; . . . ; n. (11a,b)

The rolling (tangential) velocities vr(t) (m/s) of ith meshing tooth pair are:

vrpiðtÞ ¼
OprpiðtÞ

1000
; vrgiðtÞ ¼

OgrgiðtÞ

1000
; i ¼ 0; . . . ; n. (12a,b)

The sliding velocity vs(t) and the entraining velocity ve(t) (m/s) of ith meshing tooth pair are:

vsiðtÞ ¼ jvrpiðtÞ � vrgiðtÞj; veiðtÞ ¼ jvrpiðtÞ þ vrgiðtÞj; i ¼ 0; . . . ; n. (13a,b)
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The unit normal load (N/mm) is wn ¼ Tp/(Z rwp cos a), where a is the pressure angle, Z is the face width
(mm), Tp is the torque (Nmm) and rwp is the operating pitch radius of pinion (mm). Our m(t) prediction for the
ith meshing tooth pair is based on the Benedict and Kelley model [8], though it is modified to incorporate a
reversal in the direction of friction force at the pitch point. Here, Savg ¼ 0.5(Sap+Sag) is the averaged surface
roughness (mm), and ZM is the dynamic viscosity of the oil entering the gear contact:

mBiðtÞ ¼
0:0127� 1:13

1:13� Savg
log10

29700wn

ZMvsiðtÞv
2
eiðtÞ

� �
sgn½modðOprbpt; lÞ þ ðn� iÞl� LAP�. (14)

3.3. Model III: formulation suggested by Xu et al. [9,10]

The composite relative radius of curvature rr(t) (mm) of ith meshing tooth pair is

rriðtÞ ¼
rpiðtÞrgiðtÞ

rpiðtÞ þ rgiðtÞ
; i ¼ 0; . . . ; n. (15)

The effective modulus of elasticity (GPa) of mating surfaces is E 0 ¼ 2=½ð1� n2p=EpÞ þ ð1� n2g=EgÞ�, where E

and n are the Young’s modulus and Poisson’s ratio, respectively. The maximum Hertzian pressure (GPa) for
the ith meshing tooth pair is

PhiðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wnE0

2000prriðtÞ

s
. (16)

Define the dimensionless slide-to-roll ratio SR(t) and oil entraining velocity Ve(t) (m/s) of ith meshing tooth
pair as

SRiðtÞ ¼
2vsiðtÞ

veiðtÞ
; V eiðtÞ

veiðtÞ

2
; i ¼ 0; . . . ; n. (17a,b)

The empirical sliding friction expression (for the ith meshing tooth pair), as proposed by Xu et al. [9,10]
based on non-Newtonian, thermal EHL theory, is modified in our work to incorporate a reversal in the
direction of the friction force at the pitch point as

mXiðtÞ ¼ ef ðSRiðtÞ;PhiðtÞ;ZM ;SavgÞPb2
hi jSRiðtÞj

b3Vb6
ei ðtÞZ

b7
MRb8

i ðtÞ sgn½modðOprbpt; lÞ þ ðn� iÞl� LAP�,

f ðSRiðtÞ;PhiðtÞ; ZM ;SavgÞ ¼ b1 þ b4jSRiðtÞjPhiðtÞlog10ðZM Þ þ b5e
�jSRiðtÞjPhiðtÞlog10ðZM Þ þ b9e

Savg ,

i ¼ 0; . . . ; n. ð18a;bÞ

Xu [10] suggests the following empirical coefficients (in consistent units) for the above formula: b1 ¼

�8.916465, b2 ¼ 1.03303, b3 ¼ 1.036077, b4 ¼ �0.354068, b5 ¼ 2.812084, b6 ¼ �0.100601, b7 ¼ 0.752755,
b8 ¼ �0.390958 and b9 ¼ 0.620305.

3.4. Model IV: smoothened Coulomb model

Xu [10] conducted a series of friction measurements on a ball-on-disk test machine and measured the m(t)
values as a function of SR; these results resemble the smoothening function reported by Duan and Singh [12]
near the pitch point (SR ¼ 0) especially at very low speeds (boundary lubrication conditions). By denoting the
periodic displacement of ith meshing tooth pair as xi(t) ¼ mod(Oprbpt,l)+(n�i)l�LAP, a smoothening
function could be used in place of the discontinuous Coulomb friction [4]. The arc-tangent type function is
proposed as follows though one could also use other functions [12]:

mSiðtÞ ¼
2mavg
p

arctan½FxiðtÞ� þ xiðtÞ
2mavgs

p½1þ F2x2
i ðtÞ�

; i ¼ 0; . . . ; n. (19)

In the above, the regularizing factor F is adjusted to suit the need of smoothening requirement. A higher
value of F corresponds to a steeper slope at the pitch point. In our work, F ¼ 50 is used for a comparative
study (reported in Section 4).
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3.5. Model V: composite friction model

Alternate theories (Models I to IV) seem to be applicable over specific operational conditions. This
necessitates a judicious selection of an appropriate lubrication regime as indicated by the film parameter, L,

that is defined as the ratio of minimum lubrication film thickness and composite surface roughness Rcomp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

rms;g þ R2
rms;p

q
measured with a filter cutoff wave length Lx, where Rrms is the rms gear-tooth surface

roughness [14]. The film parameter for rotorcraft gears usually lies between 1 and 10. In the mixed lubrication
regime the films are sufficiently thin to yield partial asperity contact, while in the EHL regime the lubrication
film completely separates the gear surfaces. Accordingly, a composite friction model is proposed as follows:

mðtÞ ¼

mCðtÞ simplified Coulomb model; computationally efficient ðModel IÞ;

mBðtÞ 1oLo4; mixed lubrication; ðModel IIÞ;

mX ðtÞ 4pLo10; EHL lubrication; ðModel IIIÞ;

mSðtÞ low Op; high Tp; Lo1; boundary lubrication ðModel IVÞ:

8>>>><
>>>>:

(20)

Application of Models II, III or IV would, of course, depend on the operational and tribological conditions
though Model I could be easily utilized for computationally efficient dynamic simulations [4]. Note that the
magnitude mavg of Model I or IV should be determined separately. For instance, the averaged coefficient based
on Model II was used in our prior work [4]. Also, the critical L value between different lubrication regimes
must be carefully chosen. The film thickness calculation employs the following equation developed by
Hamrock and Dowson [11,14], based on a large number of numerical solutions that predict the minimum film
thickness for two disks in line contact. Here, G is the dimensionless material parameter, W is the load
parameter, U is the speed parameter, H is the dimensionless central film thickness and bH is the semi-width of
Hertzian contact band:

LiðtÞ ¼
HciðtÞrr1ðtÞ � 103

Rcomp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LX

2bHiðtÞ

s
; i ¼ 0; . . . ; n, (21a)

bH1ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8wnrr1ðtÞ

pEr

s
; HciðtÞ ¼ 3:06

G0:56U0:69
i ðtÞ

W 0:10
i ðtÞ

; G ¼ kZs
MEr, (21b,c)

UiðtÞ ¼
ZMveiðtÞ

2ErrriðtÞ
� 10�6; W iðtÞ ¼

wn

ErrriðtÞ
. (21d,e)

4. Comparison of sliding friction models

In Fig. 2(a) are shown the magnitudes of m(t) as predicted by Models II and III for a spur gear set [4] given
Tp ¼ 22.6Nm (200 lb in) and Op ¼ 1000 rev/min. The linear time-varying formulations for meshing tooth
pairs #0 and #1 result in periodic profiles for both models. Two major differences between these two models
are: (1) the averaged magnitude from Model II is much higher compared with that of Model III since friction
under mixed lubrication is generally higher than under EHL and (2) while Model III predicts nearly zero
friction near the pitch point, Model II predicts the largest m value due to the entraining velocity term in the
denominator. As explained by Xu [10], three different regions could be roughly defined on a m versus SR
curve. When the sliding velocity is zero, there is no sliding friction, and only rolling friction (though very
small) exists. Thus, the m value should be almost zero at the pitch point. When the SR is increased from zero, m
first increases linearly with small values of SR. This region is defined as the linear or isothermal region. When
the SR is increased slightly further, m reaches a maximum value and then decreases as the SR value is increased
beyond that point. This region is referred to as nonlinear or non-Newtonian region. As the SR is increased
further, the friction decreases in an almost linear fashion; this is called as the thermal region. Model II seems
to be valid only in the thermal region [9,10].
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Fig. 2. (a) Comparison of Model II [8] and Model III [9] given Tp ¼ 22.6Nm (200 lb in) and Op ¼ 1000 rev/min. Key: pair ]1 with

Model II; pair ]0 with Model II; pair ]1 with Model III; pair ]0 with Model III; (b) Averaged magnitude of the

coefficient of friction predicted as a function of speed using the composite Model V with Tp ¼ 22.6Nm (200 lb in). Here, tc is one mesh

cycle.

Fig. 3. Comparison of normalized friction models. Key: Model I (Coulomb friction with discontinuity); Model II [8];

Model III [9]; Model IV (smoothened Coulomb friction). Note that curve between 0pt/tco1 is for pair ]1; and the curve

between 1pt/tcos is for pair ]0.

S. He et al. / Journal of Sound and Vibration 309 (2008) 843–851848
Fig. 2(b) shows the averaged magnitude of mavg predicted as a function of Op using the composite
formulation (Model V) with Tp ¼ 22.6Nm (200 lb in). An abrupt change in magnitude is found around
2500 rev/min corresponding to a transition from the EHL to a mixed lubrication regime. Similar results could
be obtained by plotting the composite m(t) as a function of Tp. Though our composite model could be used to
predict m(t) over a large range of lubrication conditions, care must be exercised since the calculation of L itself
is based on an empirical equation [11].
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Fig. 4. Combined normal load and friction force time histories as predicted using alternate friction models given Tp ¼ 56.5Nm (500 lb in)

and Op ¼ 4875 rev/min. Key: Model I; Model II; Model III; Model IV.

Fig. 5. Predicted line-of-action and off-line-of-action displacements using alternate friction models given Tp ¼ 56.5Nm (500 lb in) and

OP ¼ 4875 rev/min. Key: in time domain: Model I; Model II; Model III; Model IV; in frequency (mesh order n)

domain: Model I; Model II; Model III; Model IV.

S. He et al. / Journal of Sound and Vibration 309 (2008) 843–851 849
Fig. 3 compares four friction models on a normalized basis. The curves between 0pt/tco1 are defined for
pair ]1 and those between 1pt/tcos are defined for pair ]0. Discontinuities exist near the pitch point for
Models I and II, and these might serve as artificial excitations to the OLOA dynamics. On the other hand,
smooth transitions are observed for Models III and IV corresponding to the EHL condition. Fig. 4 compares
the combined normal loads and friction force time histories as predicted by four friction models given
Tp ¼ 56.5Nm (500 lb in) and Op ¼ 4875 rev/min. Note that while Fig. 3 illustrates m(t) for each meshing tooth
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pair the friction forces of Fig. 4 include the contributions from both (all) meshing tooth pairs. Though
alternate friction formulations dictate the dynamic friction force profiles, they have negligible effect on the
normal loads.

5. Validation and conclusion

Fig. 5 compares the predicted LOA and OLOA displacements with alternate friction models given
Tp ¼ 56.5Nm (500 lb in) and Op ¼ 4875 rev/min. Note that the differences between predicted motions are not
Fig. 6. Predicted dynamic transmission error (DTE) using alternate friction models given Tp ¼ 56.5Nm (500 lb in) and Op ¼

4875 rev/min. Key: in time domain: Model I; Model II; Model III; Model IV; in frequency (mesh order n)

domain: Model I; Model II; Model III; Model IV.

Fig. 7. Validation of the normal load and sliding friction force predictions: (a) at Tp ¼ 79.1Nm (700 lb in) and Op ¼ 800 rev/min;

(b) at Tp ¼ 79.1Nm (700 lb in) and Op ¼ 4000 rev/min. Key: prediction of tooth pair A with Model III; prediction of tooth

pair B with Model III; measurement of tooth pair A [13]; measurement of tooth pair B [13].
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significant though friction formulations and friction force excitations differ. This implies that one could still
employ the simplified Coulomb formulation (Model I) in place of more realistic time-varying friction models
(Models II to IV). Similar trend is observed in Fig. 6 for the dynamic transmission errors (DTE), defined as
d(t) ¼ rbpyp(t)�rbgyg(t)+xp(t)�xg(t). The most significant variation induced by friction formulation is at the
second harmonic, which matches the results reported by Lundvall et al. [7].

Finally, predicted normal load and friction force time histories (with Model III) are validated using the
benchmark friction measurements made by Rebbechi et al. [13]. Results are shown in Fig. 7. Based on the
comparison, m is found to be about 0.004 since it was not given in the experimental study. Here, we have made
the periodic LTV definitions of meshing tooth pairs ]0 and ]1 to be consistent with those of measurements,
where meshing tooth pairs A and B are labeled in a continuous manner. Predictions match well with
measurements at both low (Op ¼ 800 rev/min) and high (Op ¼ 4000 rev/min) speeds. Ongoing research focuses
on the development of semi-analytical solutions given a specific m(t) model and an examination of the
interactions between tooth modifications and sliding friction.
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